skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hopson, Aniya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we document our findings from previous research and literature related to adversarial examples and object detection. Artificial Intelligence (AI) is an increasingly powerful tool in various fields, particularly in image classification and object detection. As AI becomes more advanced, new methods to deceive machine learning models, such as adversarial patches, have emerged. These subtle modifications to images can cause AI models to misclassify objects, posing a significant challenge to their reliability. This research builds upon our earlier work by investigating how small patches affect object detection on YOLOv8. Last year, we explored patterns within images and their impact on model accuracy. This study extends that work by testing how adversarial patches, particularly those targeting animal patterns, affect YOLOv8's ability to accurately detect objects. We also explore how untrained patterns influence the model’s performance, aiming to identify weaknesses and improve the robustness of object detection systems. 
    more » « less
    Free, publicly-accessible full text available March 29, 2026